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Abstract. The problem of finding irreducible tensors which are polynomials in the com- 
ponents of an irreducible tensor ( n  i of a compact semisimple group H is simplified if the 
representation ( n )  is contained irreducibly in a representation ( m )  of a larger group G of 
which H is a subgroup. A number of examples are given for which the problem is completely 
solved by generating function methods. We discuss how one can use the computer to 
tackle the more difficult cases; the problem of the reduction of the SO(8) enveloping algebra 
is given as an example. 

1. Introduction 

A problem which arises in many contexts in mathematical physics is that of determining 
a basis for all irreducible tensors whose components are polynomials in the components 
of a given tensor r which transforms by an irreducible representation ( n )  of a compact 
semisimple Lie group H. In other words, the problem consists of decomposing the 
symmetric tensor product of p identical copies ( p  = 1, CO) of r into a direct sum of 
irreducible tensors of H; this is known as the calculation of the symmetric plethysm 
and these tensors are referred to as polynomial tensors based on r. 

In nuclear physics, polynomial tensors have been used as states to describe quad- 
rupole and octupole nuclear vibrations (Chacon er al 1976, Gaskell er a1 1978, 
Rohozinski 1978, Vanden Berghe and De Meyer 1979). The problem of constructing 
states for even higher modes has also been considered (Rohozinski and Greiner 1980, 
Bystricky er al 1982). The knowledge of a basis for polynomial tensors has proven 
useful in the studies of bifurcations in geophysics and elasticity theory (Sattinger 1978, 
Chossat 1979). Since there exists a one-to-one correspondence between a basis for 
irreducible tensor operators in the enveloping algebra of a Lie group H and a basis 
for polynomial tensors based on a tensor r that transforms by the adjoint representation 
of H, polynomial tensors constitute an efficient way of tackling the problem of the 
reduction (decomposition) of enveloping algebras. The enveloping algebra has proven 
to be a useful mathematical concept in theoretical physics; its structure has been the 
object of many investigations. Recently, in the context of the interacting boson model 
in nuclear physics, a systematic study of a basis for symmetry-conserving higher-order 
interaction terms was made exploiting generating function (GF) techniques and the 
concept of enveloping algebra and degenerate enveloping algebra (Van der Jeugt and 
De Meyer 1987). Earlier, the introduction of such higher-order terms in the Hamil- 
tonian was reported (Vanden Berghe er a1 1985) to give rise to a much better approxima- 
tion of the energy spectrum. A complete set of SU(3) tensor operators was recently 
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defined in the enveloping algebra of SO(8) (Biedenharn and Flath 1984, Le Blanc and 
Rowe 1987); this is of particular importance for the computation of Wigner and Racah 
coefficients in the studies of nuclear collective motion. 

The solution to the problem of finding a basis for polynomial tensors based on a 
tensor r is most conveniently effected, and presented, by finding the GF F(  U ;  N )  = 
F (  U ;  NI , .  . . , N I )  which is a fraction or sum of fractions, whose denominator factors 
have the form ( 1  - X ) ,  the X and the numerator terms being algebraic monomials in 
the variables U, NI,  N,, . . . , N,, where 1 is the rank of the group H (the dimension 
of its weight space). Consider the power expansion of F :  

Then U carries the degree U and N, the representation label n, as exponents; the 
presence of a term U" c,,N" in ( 1 . 1 )  informs us that the number of irreducible 
polynomial tensors that transform by the irreducible representation ( n )  = 
( n l ,  n , ,  . . . , n l ) ,  of degree U in r, is tun. Throughout this paper, all representation 
labels are Cartan, or Dynkin, labels and the order of labels in the Z-plet ( n )  follows 
the numbering of the simple roots given in McKay and Patera (1981). The GF F (  U ;  N )  
suggests an integrity basis, a finite number of 'elementary' polynomial tensors, in terms 
of which all tensors described by the GF can be expressed as stretched products 
(representation labels additive), with certain products being forbidden. 

An algorithm for evaluating F (  U ;  N )  starting with the corresponding GF for weights 
has been proposed (Gaskell et a1 1978). This method is extremely tedious to implement 
for a group of high rank or for a tensor r of high dimension. Another approach which 
has been used to solve this problem is based on a well known relation (Weyl 1946) 
between irreducible representations of the symmetric group and those of the group 
U ( d )  of unitary d x d matrices. It can be shown (Patera and Sharp 1980) that, given 
a tensor of dimension d that transforms by an irreducible representation ( n ) ,  the 
problem of finding the symmetric plethysm is equivalent to that of finding the branching 
rules of S U ( d )  3 H restricted to the symmetric representations of SU(d) where the 
representation ( 1 , 0 , .  . . , 0) of S U ( d )  contains ( n )  once. The task of finding the GF 

for these branching rules can be quite difficult; it is important to take advantage of 
any simplification which presents itself. 

Such a simplification occurs when H is not maximal in SU( d )  but occurs in a chain 
H c G c  S U ( d )  and when the representation ( n )  is embedded irreducibly in a rep- 
resentation ( m )  of G such that ( n )  c ( m )  c (1,0,0, . . . 0). The problem 'factors' into 
two simpler problems: 

( a )  finding the GF J (  U ;  M )  = J (  U ;  M ,  , . . . MI*)  for G-polynomial tensors based 
on a tensor that transforms by (m); I* is the rank of G; 

( b )  finding the GF K ( M ;  N )  = K ( M I , .  . . MI*; N I , .  . . , N I )  for branching rules 
from G to H where I is the rank of H; the complete GF K is not always needed; Mi 
which do not appear in J (  U, M )  can be set equal to zero. To find the desired GF 
F (  U ;  N )  it is necessary to combine K ( M ;  N )  with J (  U ;  M )  (or 'substitute' K into J ) :  

F (  U ;  N ) = J (  U ;  M ) K ( M - ' ;  N)lMo (1.2) 
where I M o  is an instruction to retain only the terms of degree zero in the variables Mi.  
The number of denominator terms of the GF F (  U ;  N )  resulting from (1.2) is equal to 
the number for J (  U ;  M )  plus the number for K ( M ;  N )  less the number of Mi to be 
eliminated by I M o .  
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Dynkin (1957) has given a complete list of irreducible embeddings of a subgroup 
representation into a group representation. Our purpose in this paper is to illustrate 
how one can exploit Dynkin’s work to calculate GF for polynomial tensors or at least 
get part of their integrity basis when the basis is large. In 0 3 we treat all the ‘tractable’ 
cases in Dynkin’s list; roughly, ‘tractable’ means that terms in the GF have no more 
than twelve denominator factors. 

The case in which a group representation reduces under a subgroup to an irreducible 
representation and a scalar can also be used to construct GF for polynomial tensors. 
In that case (1.2) is replaced by 

F ( U , N ) = ( l - U ) J ( U ;  M ) K ( M - ’ ;  N)(,o (1.3) 

a few examples of which are treated in 9 4. The embeddings were found in the branching 
rule tables of McKay and Patera (1981). The stratagem described above works equally 
when the group H is a subjoined group of G, rather than a subgroup. An example is 
given in § 5. 

The GF J (  U ;  M )  and K ( M ;  N )  are usually determined by first finding the corre- 
sponding integrity basis and syzygies; this is done by proceeding systematically through 
the irreducible representations of the parent group, starting with representations for 
which only one representation label is non-zero and systematically increasing the 
number of non-zero labels. For every representation of the parent group one considers, 
one has to take all possible products of powers of the elementary multiplets (taking 
into account the syzygies) and check whether it gives the correct branching by making 
a dimension and second-order index check. In cases where the integrity basis is large, 
this procedure can be very tedious. A computer program MULTI has been written 
which does all this work, leaving the user with the task of guessing the elementary 
multiplets and their syzygies. Knowledge of the branching rules reduces the guesswork 
considerably. For low-dimensional representations of the parent group, these can be 
obtained from tables like those of McKay and Patera; if one needs to consider 
high-dimensional representations, in many cases these can be obtained by Young 
diagram techniques and the whole process can be computerised. In order to illustrate 
how one can use the computer to tackle cases where the integrity basis is large, we 
consider in 0 6 the problem of the reduction of the SO(8) enveloping algebra. We now 
give rules for determining the maximum number of denominator factors in any given 
term of a GF; the knowledge of such a number provides important clues for the 
construction of GF and is a measure of how difficult it will be to determine. 

2. Determination of the number of denominator factors 

The number of denominator factors in a typical term of the GF for polynomial tensors 
based on a tensor r of a group H is f ,  = d - i ,  where d is the dimension of I‘ and i is 
the number of internal labels required by the representations of H described by the 
GF. For i we have (Seligman and Sharp 1983) 

i = f( rh - lh - rj + Ij) (2.1) 
where rh and /h are the order (number of generators of its algebra) and rank of H, 
and rj and lj are the order and rank of the subgroup J whose Dynkin diagram is that 
corresponding to the zero labels of the possibly degenerate representations appearing 
in the GF. Let us illustrate this point with a few examples. The GF for SU( n) polynomial 
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tensors based on the tensor ( 2 , 0 , .  . . , 0) is 

F (  U ;  NI,  N2, . . Nn-1) 
= [ ( l -  U N i ) ( l -  U * N : ) ( l -  U 3 N : )  . . . 

x ( 1  - U"-'NZ,- , ) ( l  - U " ) ] - ' .  (2.2) 

This is an example of a non-degenerate case since all ( n  - 1 )  SU(n) representation 
labels (the exponents of the N , )  appear in the GFand therefore rJ = IJ = 0; d = ( n  + l )n /2 ,  
rh = n 2  - 1 and lh = n - 1 so d - i = n which agrees with (2.2). As a second example we 
consider the G F  for SU(2n) polynomial tensors based on a tensor ( 0 , 1 , 0 , .  . . , 0): 

F ( U ;  N2, N41.' * 1 N2n-2) 

= [ ( 1 -  UN2)(1-  U 2 N 4 ) .  . . (1-  U"-'N2n-2)(1-  U " ) ] - ' .  (2.3) 

This is a degenerate case since only tensors of the type (0, n 2 ,  0, n 4 ,  0, . . . , n z n P 2 ,  0) 
appear in (2.3). The group J whose Dynkin diagram correspond to the zero labels is 
simply SU(2) x SU(2) x . . . x SU(2) n times; therefore rJ = 3n and IJ = n. The dimension 
of the tensor (0, 1 ,  0, . . . , 0) is d = n(2n - l ) ,  rh = 4n2- 1 and l h  = 2n - 1 .  The number 
of denominator factors is f ,  = d - i = n which agrees with (2.3). 

Let us now consider the case of GF for branching rules. The number of denominator 
factors in a GF for branching rules from a group G to a subgroup H is fb = c,+ i, - ih;  

here cg is the number of non-vanishing G-representation labels, i, and i h  are the 
required internal labels of the most general representations of G and H appearing in 
the GF; ig and ih are calculated using (2.1). As a first example let us consider the GF 

for branching rules (Sharp 1970) of Sp(6) 2 Sp(4) x SU(2): 

K(MI, M2, M3; NI,  N2, N3) 

= [( 1 -MI NI)( 1 - M,N3)(1 -M2N2)( 1 - M2)( 1 - M3N,)( 1 - M3N2N3) ] - '  

x [( 1 - M2N1 N3)-' + MiM3 N2( 1 - MIM3N2)-'] (2.4) 

where M1 , M2 and M3 carry the Sp(6) labels as exponents, N ,  and N2 those of Sp(4) 
and N3 carries the SU(2) label (the dimension of an SU(2) representation j is j +  1 ) .  
For Sp(6) rg = 21, cg = 3 and since all representation labels of Sp(6) appear in (2.4) 
we have rJ = 0 and lJ = 0 so i, = 9. For Sp(4) x SU(2), rh = 13, 1, = 3 and r, = I, = 0 so 
ih = 5; therefore fb = 7, which agrees with (2.4). As a second example we consider the 
branching rules of SU(36) 2 SU(9) restricted to the symmetric representations of 
SU(36); the GF is 

K(M1; N2, N 4 ,  N6, N8) 

= [ ( l - M , N , ) ( l  - h f : N 4 ) ( 1 - k f i N 6 ) ( 1  -M;Ng)]- '  (2.5) 
where MI carries the SU(36) label and the N, those of SU(9); (2.5) is an example of 
a degenerate case since only the SU(36) representations of the type (m,  , 0, . . . , 0) and 
SU(9) representations of the type (0, n 2 ,  0, n 4 ,  0, n6, 0, n,) appear in (2.5). For SU(36) 
cg= 1 ,  r,= 1295, 1,=35, rJ=1224 and IJ=34 (here J=SU(35)) so that i g = 3 5 .  For 
SU(9), rh = 80, l h  = 8, rJ = 12 and lJ = 4 (since J = SU(2) x SU(2) x SU(2) x SU(2)) SO 
ih = 32; the number of denominator factors should therefore be fb = 4, which agrees 
with (2.5). The GF (2.5) is a particular case ( M ,  replaced by U )  of the following GF 

for SU(2n + 1 )  polynomial tensors based on a tensor ( 0 , 1 , 0 , .  . . , 0): 

F ( U ;  N2,N4 , . . . ,  N 2 , ) = [ ( 1 - V N ~ ) ( 1 - U 2 N 4 )  . . .  (1 -UU"N2, ) ] - '  (2.6) 
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where U carries the degree and the N ,  the SU(2n + 1) representation labels. We now 
proceed through Dynkin's list (Dynkin 1957). 

3. Polynomial tensors based on a tensor 

3.1. Sp(2n) polynomial tensors based on a tensor (k, 0, . . . , 0) 

The dimension of the tensor r E ( k ,  0, . . . , 0) is d = (2"-i'k); the GF for a polynomial 
tensors based on r is equal to the GF for branching rules of Sp(2n) c SU(d)  restricted 
to the symmetric representations of SU(d).  The task of constructing such a GF may 
be reduced by exploiting the following irreducible embedding: 

cn = Ab-1 n 3 2 , k s 2  

(k,O , . . . ,  O)c(k ,O , . . . ,  0). 

The problem factors into two simpler problems. First we construct a GF J (  U; M) for 
SU(2n) polynomial tensors based on a tensor ( k ,  0, .  . . , 0) and then construct a GF 

K ( M ;  N )  for branching rules from SU(2n) to Sp(2n); we obtain the final answer by 
combining both results using (1.2). 

The case k = 2 is of particular interest since the GF for polynomial tensors based 
on a tensor (2,0, .  . . , 0) describes the reduction of the enveloping algebra of Sp(2n). 
The GF J (  U ;  M )  is given in (2.2); the maximum number of denominator factors (see 
§ 2 ) i n a n y t e r m o f K ( M ; N ) i s f b = n 2 + n - 1  ( c , = 2 n - 1 , i g = n ( 2 n - 1 ) a n d i h = n 2 ) .  
For n = 2  

J ( U ;  M l , M 2 , M 3 ) = [ ( l -  U4)( l -UM:)(1-U2Mi)(1-  U3A4i)]-'  (3.2) 

K(M1, M,, M3; NI, NJ 

and the GF for branching rules from SU(4) to Sp(4) is (Patera and Sharp 1980) 

= [ ( l  - M1N1)(1- M,N,)(l- MJ(1- MJV1)(l-  M,M,N,)]-' (3.3) 

where the M ,  and N,  carry the SU(4) and Sp(4) representation labels respectively; 
notice that fb = 5 ,  which agrees with (3.3). The GF F (  U ;  N , ,  N 2 )  for Sp(4) polynomial 
tensors based on a tensor (2,O) is then obtained by 'substituting' (3.3) into (3.2) using 
the method proposed in (1.2). The GF (3.2) informs us that only SU(4) representations 
with even labels need to be considered; keeping only terms which are even powers in 
the M, in (3.3) and denoting the resulting GF by K E ( M ;  N), the operation (1.2) is 
easily effected by making the following substitutions in K E (  M ;  N ) :  M :  + U, M i  + U 2  
and M:+ U3.  We then get (Couture and Sharp 1980) 

F (  U ;  N ,  N ~ )  = [ ( I  - u 2 ) ( 1  - u4)(1  - UN:)(I - UW:) 

x (1 - u ~ N : ) (  1 - U~N,)]- '( 1 + u ~ N : N , ) .  (3.4) 
The GF (3.4) also describes the reduction of the enveloping algebra of SO(5) since it 
is isomorphic to that of Sp(4). The GF describing the decomposition of the Sp(6) 
enveloping algebra (Couture and Sharp 1980) corresponds to the n = 3 case; it was 
also obtained by using the irreducible embedding given in (3.1). 

For k = 3, the task is more difficult; the maximum number of denominator factors 
for a GF for polynomial tensors based on a tensor ( 3 , 0 , .  . . , 0 )  is & =  
i n (  n + 1)(2n + 1) - n2.  For n = 2, fp  = 16. 
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3.2. SO(2n + 1 )  polynomial tensors based on a tensor (0, 0, . . . , 1, 0, . . . , 0) 

The dimension of the tensor r = (0, 0, . . . , 1,0, . . , , 0) is d = (’“cl); the task of construct- 

ing a GF for such SO(2n + 1) polynomial tensors may be simplified if one considers 
the following irreducible embedding: 

t k -  

-k- 

Bn c A 2 n  n > k > 2  

(0,O , . . .  l , o  , . . .  O ) c ( O , O  . . . )  l , o  , . . . )  0). 
c k 2  L k -  

(3.5) 

The problem factors into two simpler ones. Firstly, construct a GF J (  U ;  M )  for 
SU(2n + 1) tensors based on a tensor (0,O . . . , 1,0, .  . . , 0); secondly, construct the GF 

K ( M ;  N )  for the branching rules from SU(2n + 1) to SO(2n + 1). The reduction of 
the enveloping algebra of SO(2n + 1) is described by the k = 2 case. J (  U, M )  is given 
in (2.6); the maximum number of denominator factors in any term of K ( M ;  N )  is 
fb= n2+ n ( c p =  n, i,= 2n2, z, = n’). The n = 3 case corresponds to the GF describing 
the decomposition of the SO(7)  enveloping algebra and has been obtained (Couture 
and Sharp 1980) using the embedding (3.5). For n = 4, fb = 20 so the task would be 
quite difficult. 

L k -  

3.3. SO(2n + 1 )  polynomial tensors bused on a tensor (0, 0, . . . , 0,2) 

The dimension of the tensor r =  (0, 0, . . . , 0 , 2 )  is d = (2n,“);  the irreducible embedding 
is 

Bn c A z n  n s 2  

( O , O , .  . . , 2 ) c  ( O , O , .  . . , 1 , 0 , .  . . , O ) .  
t n -  

In order to constructs a GF F (  U ;  N )  for SO(2n + 1) polynomial tensors based on r 
one first constructs a GF J (  U ;  M )  for SU(2n + 1 )  polynomial tensors based on the 
tensor (O,O,  . . . , 1 , 0 , .  . . , 0,O); one then constructs the GF K ( M ;  N )  for branching 

rules of SU(2n + 1) to SO(2n + 1). The maximum number of denominator factors in 
any term of F (  U ;  N )  is d - n2.  The case n = 2 is interesting since it constitutes another 
way of calculating (3.4); for n = 2, d = 10. The GF J( U ;  M )  for SU(5)  polynomial 
tensors based on a tensor (0, 1 ,0 ,0 )  is given by (2.7): 

-n- 

J (  U ;  M2, M4) = [ ( 1  - UM,)( 1 - U’M4)I-l. 

The GF for branching rules from SU(5)  to SO(5) restricted to SU(5)  representations, 
for which only the second and fourth labels are non-zero, is (Patera and Sharp 1980) 

K ( M 2 ,  M4; NI, N2) = [(  1 - M i ) (  1 - M i ) (  1 - MzN:)( l  -M4N1)( 1 -MZM4N:) 

x ( 1  - M:N:)]-’[(  1 + M : M ~ N ~ N : ) ] .  

The GF for SO(5) polynomial tensors based on a tensor (0 ,2 )  is obtained through the 
prescription (1.2), which is easily performed by making the following substitutions in 
K ( M ;  N ) :  M2+ U, M4-, U’. The GF obtained is equal to the one given in (3.4) if we 
make the following substitutions: N 1 - N 2 .  The task of constructing such GF soon 
becomes very difficult since, for n = 3, d - n2  = 26. 
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3.4. SO(2n) polynomial tensors based on a tensor (0, 0, , . . , 1,0, . . . , 0) 

The dimension of the tensor (0,O . . . 1,0,. . . , 0 )  is d = ( y )  and the irreducible 

embedding to be used is 

c k -  

C k L  

DnCA2n-l n 2 4 , n - l > k 3 2  

(0,O * . .  l , o  ) . . . )  O ) c ( O , O  . . . )  l , o  , . . . ,  0). 
L k L  c k -  

J (  U ;  M )  is the GF for branching rules of SU(d) to SU(2n)  restricted to the symmetric 
representations of SU(d);  K ( M ;  N )  is the GF for branching rules from SU(2n)  to 
SO(2n)  where some of the SU(2n)  representation labels may be zero (degenerate case). 
The case k = 2 describes the reduction of the SO(2n)  enveloping algebra; the SO(8) 
enveloping algebra is discussed in P 6 .  

3.5. SO(2n) polynomial tensors based on a tensor (0, 0, . . . , 1 , l )  

The dimension of the tensor (0, 0, . . . , 1 ,  1) is d = 
of interest is 

and the irreducible embedding 

Dn C A2n-1 n 3 3  

(O,O,. * .  ,1,1)c (O,O,. . . , 1,0,. . . , O )  n > 3  
-n-1- 

n = 3 .  

Assuming that all representation labels appear in the GF J (  U ;  M ) ,  then the maximum 
number of denominator factors in the GF for branching rules from SU(2n)  to SO(2n)  
i s f b = n 2 + 2 n - l  ( c , = 2 n - l ,  i g = n ( 2 n - 1 ) ,  i h = n ( n - 1 ) ) .  The solution to the n = 3  
case gives the reduction of the SU(4) enveloping algebra; in this case J (  U ;  M )  is given 
by (2 .3 ) .  Unfortunately, if one attempts the reduction of any other SU( n )  enveloping 
algebra (SU(2) and SU(3) have already been done), Dynkin’s list informs us that there 
is no irreducible embedding that could be used to simplify the task. 

3.6. SO(2n + I )  polynomial tensors based on a tensor (0, 0, , . . , k)  

The irreducible embedding of interest is 

Bn = Dn+, k > l , n 3 3  

(O,O,  . . . , k ) c  (0,. . . , k, 0). 

The GF K ( M ;  N )  giving the branching rules of S 0 ( 2 n + 2 )  to S 0 ( 2 n + l )  is easily 
constructed since integrity bases for all n are known (Sharp 1970). What remain to 
be calculated are the GF J (  U ;  M )  for SO(2n + 2 )  polynomial tensors based on a tensor 
(0, 0, . . . , k, 0). Let us first consider the case n = 3, k = 1 .  Since the dimension of the 
SO(8) tensor (O,O, l , O )  is equal to 8, the GF J (  U ;  M )  is equal to the GF for the 
branching rules of SU(8) to SO(8) restricted to the symmetric representations of SU(8); 
it is easily shown that 

J ( U ;  M ) = [ ( l -  U 2 ) ( 1 -  UM,)]-’ (3 .7)  
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where U carries the SU(8) label and M3 the third representation label of SO(8). The 
GF K ( M ;  N )  for branching rules from SO(8) to SO(7) restricted to SO(8) representa- 
tions, for which only the third label is non-zero, is 

K ( M 3 ;  N3)=(1-M3N3)-I  (3.8) 

where N3 carries the third representation label of SO(7) .  Following the prescription 
(1,2), the G F  for SO(7) polynomial tensors based on a (0, 0, 1) tensor is 

(3.9) F (  U ;  N ~ )  = [ (1 - I/')( 1 - U N ~ ) ] - ' .  

Note that f ,  = 2, which agrees with (3.9). 

(0, 0, 0, 1,O) is 
For the case n = 4,  k = 1 the GF for SO( 10) polynomial tensors based on a tensor 

J ( U ;  M , , M , ) = [ ( ~ - U ~ M ~ ) ( ~ - U M , ) ] - '  (3.10) 

where MI and M4 carry the first and fourth SO( 10) representation labels as exponents. 
The appropriate GF for branching rules from SO(10) to SO(9) is 

K ( M I ,  M4; NI, N4)=[(1-M1N1)(1-M1)(1-M4N4)I-1. (3.11) 

'Substituting' (3.1 1) into (3.10) through the prescription (1.2), we get the GF for SO(9) 
polynomial tensors based on a tensor (0, 0, 0, 1) 

F ( U ;  N , , N ~ ) = [ ( ~ - U ~ ) ( ~ - U * N , ) ( ~ - U N ~ ) ] - ' .  (3.12) 

f ,  = 3 ( d  = 16, rh = 36, 1, = 4,  rJ = 8, fJ = 2), which agrees with (3.12). 

based on a tensor (0, 0, 0, 0,1,0) is 
Finally we consider the case n = 5 ,  k = 1. The GF for SO( 12) polynomial tensors 

J (  U ;  M2, M4, Ms) = [ (1 - U')( 1 - U2M2)(  1 - U4M4)( 1 - UM5)(  1 - U 3 M S ) ] - '  

where U carries the degree of the tensors and the M ,  the second, fourth and sixth 
SO(12) labels. The GF for branching rules from SO(12) to SO(l1) is 

K ( M 2 ,  M4, M5; NI, N2, N3, N4, N5) 

= [ ( 1  - M2N1)( 1 - MzN,)( 1 - M4N3)( 1 - h'f4N4)( 1 - M5N5)I-l. 

It follows that the GF for SO( 11) polynomial tensors based on a tensor (0, 0, 0, 0, 1) is 

F ( U ;  N,, N ~ ,  N , ,  N ~ ,  N ~ )  = [ ( I  - u 4 ) ( 1  - u 2 ~ , ) ( 1  - u 2 ~ , ) ( 1  - u 4 ~ , ) ( 1  - u~N,)  

X (1 - UN,)( 1 - U3Ns)]- ' .  

f ,  = 7 ,  which agrees with F (  U ;  N I .  For the case k = 1 and n = 6 we get f ,  = 22. When 
n = 3, k = 2 we have f ,  = 23; things soon become difficult to evaluate. 

3.7. SO(2n + 1)  x SO(2m + 1)  polynomial tensors based on a tensor (0, 0, . . . , 0, 1) x 

The irreducible embedding is 

B n * B m  c D n + m + l  

(090, . * . , 0,1) 

n a  1, m a  1, n + m 2 4  

(O,O, . . . , 1) x (O,O,  * . . , 1) c (0, .  . . , 1,O). 
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We consider the case n = m = 2. The GF for SO( 10) polynomial tensors based on a 
tensor (0, 0, 0,1,0) is 

J (  U; M ~ ,  M4) = [(  1 - u2kf1) (  1 - UM~)]- ' .  (3.13) 

The GF for branching rules from SO( 10) to SO(5) x SO(5) is 

where MI and M4 carry the first and fourth labels of SO(10); NI and N2 carry the 
first and second labels of the first SO(5); N3 and N4 carry the first and second label 
of the other SO(5). Following the prescription (1.2), the GF for SO(5) x SO(5) poly- 
nomial tensors based on a tensor (01) x (01) is 

where U carries the degree as exponent. 
Denoting an element of the integrity basis of (3.72) by ( U ;  n,n2; n3n4) where U is 

the degree (exponent of U )  and n, , n, and n,, n4 are the SO(5) labels; the full integrity 
basis is easily read from (3.14): 

a = (2; 1,O; 0,O) b = (2; 0,O; 1,O) c = (2; 0,o; 0,O) 

d = (4; 0,O; 0,O) e = (1; 0, 1; 0, 1) f =  (2; 1,o; 1,O) 

g = (3; 0, 1; 0, 1) h = (4; 0,2; 1,O) i = (4; 1,O; 0 ,2)  

with the product h*i forbidden. 

3.8. Sp(8) polynomial tensors based on a (0, 1 ,  0, 0) tensor 

The irreducible embedding is 

The GF for E6 polynomial tensors based on a (0, 0, 0, 0, 1,O) tensor is 
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where U carries the degree and MI and Ms the E, labels. The GF for branching rules 
from E6 to Sp(8) is 

K(Ml,M5; N 2 ,  N 3 ,  N4) 

= [ ( ~ - M , N ~ ) ( I - M , N ~ ) ( ~  -M?N,)(I - M ~ N ~ ) ( I  - M : )  

x ( I  - M:)(I - M : M ~ N ~ N ~ ) ( I  -M,M:N,N~)I-' 

x {[( 1 -MlM5N,N3)( 1 -M:M:N:N4)]-' 

+ M:M:N:[( I  - M , M ~ N , N ~ ) ( I  - M : M ; N ~ ] - '  

+ M , M ~ N ~ [ ( I  -M,M,NJ(I - M : M : N : N , ) ] - '  

+ M:M:N*N:[(I - M , M , N ~ ) ( ~  - M ~ M ~ N : ) ] - ' } .  

Following the prescription (1.2) we get the GF for Sp(8) polynomial tensors based on 
(0, 1,0,0): 

F ( U ;  NI, N2, N3, N4) 

= [( i - u3)( 1 - UN,)( 1 - u'N,)(I - u~N,) (  1 - LJ~N,)(  I - u2)( I - U,) 

X (1 - U4NlN3)(1 - U5NlN3)]-'{[(1 - U3N1N3)(1 - U6N:N4)]-' 

+ u,N:[(I- U3NlN3)(1 - u ~ N : ) ] - ' +  v 3 ~ , [ ( 1  - u~N, )  

x (1 - u~N:N,)]-' + u ~ N , N : [ (  1 - u~N,)( 1 - ~ ~ ~ 3 1 - l ) .  (3.15) 

Note that& = 11 (rh = 36, /h = 4, rj = lj = 0), which agrees with (3.15). The integrity basis 
is read from (3.15); denoting an element of this basis by ( U ;  n,, n2, n3, n,), with U 
being the degree and the ni being the Sp(8) labels, we have 

a = (1; 0,1,0,0) 

c = (2; 0, 0, 0,O) 

d = (3; 1,0, 1 , O )  

f =  (4; 1,0,1,0) 

i = (3; o,o, 0,O) 

a* = ( 2 ;  0,1,0,0) 

c* = (4; 0, 0, 0,O) 

f* = (5; l , O ,  1 , O )  

b = (2; 0, O,O, 1 )  b* = (4; 0, O,O, 1) 

e = (3; 0, 1,0,0) 

g = (6 ;  2,0 ,0 ,1)  h = (6; 0, 0,2,0) 

with the products de and gh forbidden. 

4. Polynomial tensors based on a tensor and a scalar 

4.1. Sp(6)  polynomial tensors based on a tensor (0, 1, 0) 

Embeddings of the type (n)+(scalar) c (m)  can also be exploited to construct a GF 

for polynomial tensors based on a tensor ( n  1; the strategy consists in first constructing 
a GF F (  U ;  N )  for tensors based on a tensor (n)  +(scalar); the presence of the scalar 
manifests itself in F (  U ;  N )  through a single denominator term (1 - U ) ,  which may 
be ignored if one is interested in polynomial tensors based on ( n ) .  
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The embedding of interest is 

Sp(6) = SU(6) 

(O,l, O)+(O, 0,O)C (0 ,1,0,0,0) .  

The GF J (  U ;  M )  for SU(6) polynomial tensors based on a tensor (0, 1,0,0,0) is given 
by (2.3): 

J ( U ;  M2,M4,M6)=[(1-U3)(1-UM2)(1-U2M4)]-'. 

The appropriate GF K ( M ;  N )  for branching rules from SU(6) to Sp(6) is (Couture 
and Sharp 1980) 

K(M2, M4; NI, N2, N3) 

=[(I  -M2)(1 -M2N2)(1-M4)(1-M4N2)(1 - M ~ M ~ N I N ~ ) ] - ' .  

It follows that the GF for Sp(6) polynomial tensors based on a tensor (OlO)+(OOO) is 

F ( U ;  NI, N2, N3) 

= [ ( l  - U ) (  1 - U')( 1 - UN2)(1 - U')( 1 - U2N2)(1 - U3N1N3)]-'. (4.1) 

The GF for Sp(6) polynomial tensors based on a tensor (0,1,0) is obtained from (4.1) 
by removing the denominator factor (1 - U). 
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The integrity basis for these branching rules is found from (4.2); denoting an element 
of this basis by ( m 2 ,  m4,  m,; n , ,  n 2 ,  n3 ,  n4) we get 

a = (1,0,0; 0, 1,0,0) a* = ( O , O ,  1; 0, 1,0,0) 

b = (1,0,0; o,o, 0,O) b* = ( O , O ,  1; o,o,  0,O) 

c = (0 ,  1,o; o,o,  0, 1) 

e = (0, 1 , O ;  O,O,  0,O) g = (1,0, 1; 0, 0, 0,1) 

f = (1,0, 1; 190, 190) h=( l ,1 ,0 ;  l,O,l,O) 

h*=(O,1,1;1,0,1,0) i=(I, l ,I ;O,O,2,0) 

j = (1, 1, 1; 2,0,0, 1) 

d = (0, 1,O; 0, 1,0,0) 

with the products df and ij forbidden. I f  we follow the prescription described in (2.1) 
and discard the factor (1 - U ) ,  the GF (3.15) is obtained after some algebra. 

5. SU(4) polynomial tensors based on a tensor (1, 0 , l ) ;  the groupsubgroup orbit- 
orbit generating function 

The solution here gives the reduction of the SU(4) enveloping algebra, discussed in 
0 3.5 and by Couture and Sharp (1980). Here we get the same result by using the 
embedding 

SU(4) < Sp(6) 

1)-(0,0,0)<(0,1,0) 

which is actually a subjoining (Patera et a1 1980). 
The GF for Sp(6) polynomial tensors based on a tensor (0 ,  1,O) is 

J ( U ;  M1, M2, M3) 

= [( 1 - U’)( 1 - U’)( 1 - UM2)( 1 - U2M2)( 1 - U’M, M3)]-’. (5.1) 

The GF for branching rules from Sp(6) to SU(4) is 

K(M1, M2, M3; Nl, N2, N3) 

= (1 + MlM2N2)[(1- M]N2)(1- M:)(l+ M,)(l- M:N:)(l- M3N:) 

X ( 1 -  M3N;)]-’[(l- M,N,N,)-’- M,N2(1+M3NJ-’]. (5.2) 
To find branching rules for a particular Sp(6) representation, the Sp(6) > SU(4) 

orbit-orbit GF was very useful. It is 

O( Mi , M2 9 M3; NI , N2, N3) = [ ( 1 - Mi N2) ( 1 - M2 Ni N3 1 I-’[ ( 1 - M3 N?)-’ 

+M3N:(l -M,N:)-’]. (5.3) 
In the power expansion of (5.3) the occurrence of a term M ; ” I M , ” ~ M Y ~ N ; ~ N ~ ~ N ; ~  
implies the presence of the SU(4) (Weyl) orbit ( n l ,  n,, n3) in the Sp(6) orbit 
(m,, m 2 ,  m3). A similar orbit-orbit GF can be determined for any group-subgroup (or 
group-subjoined-group). When the GF (5.2) is substituted into (5.1), one gets the GF 
for the SU(4) enveloping algebra, with an additional denominator factor (1 + U) due 
to the presence of the SU(4) scalar in the original embedding. 
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6. The reduction of the enveloping of SO@) 

The task of establishing the integrity basis and its syzygies can be quite formidable in 
cases where the basis is large; most 'tractable' cases have been worked out and what 
remains is much more difficult. If needed, these difficult cases may nevertheless be 
tackled by exploiting the irreducible embeddings discussed in this paper and making 
use of the computer; in such cases, one may at least obtain part of the integrity basis 
(which may be all one needs). As an example, we consider the problem of the reduction 
of the SO(8) enveloping algebra. 

The structure of the SO(8) enveloping algebra is of interest in its own right. Recently, 
within the context of the development of the microscopic theory of nuclear collective 
motion, SO(8)* and S0(6,2)  were shown (Le Blanc and Rowe 1986) to be candidates 
for a dynamical group of SU(3); the tensor structure of SU(3) has been studied within 
these models and a complete set of SU(3) tensor operators (Biedenharn and Flath 
1984, Le Blanc and Rowe 1987) has been defined in the enveloping algebras of SO(8)* 
and S0(6,2) ;  both these enveloping algebras are isomorphic to that of SO(8). Later 
in this section, we shall discuss some of their results. 

Since the problem of the reduction of an enveloping algebra is equivalent (this 
follows from the PoincarC-Birkhoff-Witt theorem) to that of finding an integrity basis 
for polynomial tensors based on a tensor r that transform by the adjoint representation, 
we consider the following irreducible embedding (see 0 3.4): 

SO( 8) = SU( 8) 

(0, 1,0,0) c (0, 1,0,0,0,0,0). (6.1) 
The generating function J (  U ;  M )  for SU(8) polynomial tensors based on r is obtained 
from (2.3): 

J ( U ;  M2, M4,M6)=[(1-U4)(1-CTM2)(1-U2M4)(1-U3M6)]-' (6.2) 

where M2, M4 and M6 carry as exponents the second, fourth and sixth SU(8) representa- 
tion labels and U carries the degree of the tensor. 

The next step consists of establishing the integrity basis for the branching rules of 
SU(8) to SO(8). The integrity basis is large; up to (and including) degree 12, it consists 
of 81 elementary multiplets and 197 syzygies; we estimate that the full integrity basis 
contains more than 100 elementary tensors. As we go higher in degree the task of 
taking all possible products of powers of the known elementary multiplets soon becomes 
extremely tedious. The program MULTI does these products (automatically excluding 
the forbidden ones) and checks whether we have the correct total dimension and 
second-order index. This program is very flexible and can be used for any group- 
subgroup combination; it may also be used to calculate the integrity basis for the 
subjoining of a group to another one. The problem of guessing the new elementary 
multiplets and syzygies proved to be very difficult past degree 7. Fortunately branching 
rules can be obtained by Young diagram techniques (Cummins 1987); we wrote a 
program based on these techniques which gave us the branching rules of SU(8) to 
SO(8). Combining this program with MULTI  has made the guessing part easy. The 
use of the irreducible embedding (6.1) proved very useful since it breaks the problem 
into several simpler ones; in the case of degree 12, the problem breaks down into 29 
simpler ones as may be verified by expanding (6.2). Given an element b =  
(m2, m4, m6; n,, n2, n 3 ,  n4) of the integrity basis for the branching rules of SU(8) to 
SO(8), where the m and n are the representation labels of SU(8) and SO(8) respectively, 
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it follows from (6.2) that the corresponding element e of the integrity basis for the 
SO(8) enveloping algebra is e = (U = m,+2m4+3m,; n,, n,, n3, n,) where U is the 
degree of the elementary tensor e. We give the integrity basis up to degree 10: 

1 = (1; 0, 1 ,0 ,0 )  2 = (2; 2 ,0 ,0 ,0)  

5 = (2; 0, 0 ,2 ,0 )  

3 = (2; 0, 0, 0,O) 

4 = (2; 0, 0, 0,2) 6 = (3; 0, 1 ,0 ,0 )  

7 = (3; 1,0, 1, 1) 

10 = (4; 2 ,0 ,0 ,0 )  

8 = (3; 0, 1 ,0 ,0)  

11 = (4; 0, 0, 0,O) 

9 = (4; 0 ,2 ,0 ,0)  

12 = (4; o,o, 0,O) 

13 = (4; 1,0, 1, 1) 

16 = (4; 0, 0 ,2 ,0)  

14=  (4; 1,0, 1, 1) 

17 = (5; 1, 1, 1, 1) 

15 = (4; 0, 0, 0,2) 

18 = (5; l,O, 1, 1) 

19 = (5; 0, 1,0,0) 20= (5; l,O, 1, 1) 21 = (5; 1,0,  1, 1) 

22 = (6; 2 ,0 ,0 ,0 )  23 = (6; 0, 0, 0,O) 24 = (6; 0, 0,2,2) 

25 = (6; 2, 1 ,0 ,0 )  

28 = (6; 0, 0 ,2 ,0)  

3 1 = (6; 2 ,0 ,2 ,0)  

3 4 =  (7; 1, 1, 1, 1) 

26 = (6; 0, 1 ,0 ,2)  

29 = (6; 0, O,O, 2) 

32 = (6; 1,0,  1, 1) 

35 = (7; 1, 1, 1, 1) 

27 = (6; 0, 1 ,2 ,0)  

30 = (6; 2 ,0 ,0 ,2)  

33 = (6; l,O, 1, 1) 

36 = (7; 1,0,  1, 1) 

37 = (7; 1,0, 1, 1) 38 = (7; 2 ,0 ,2 ,0 )  39 = (7; 2 ,0 ,0 ,2)  

40 = (7; 0, 0 ,2 ,2 )  41 = (7; 1,0, 1, 1) 42 = (8; 0, 1 ,2 ,2)  

43 = (8; 1,0,  1, 1) 44 = (8; 0, 0 ,2 ,2)  45 = (8; 2, 1 ,0 ,0 )  

46 = (8; 0 ,2 ,0 ,0 )  

49 = (8; 2, 1 ,0 ,2)  

47 = (8; 0, 1 ,2 ,0 )  

50 = (8; 2, 1 ,2 ,0)  

48 = (8; 0, 1 ,0 ,2)  

51 = (8; 2 ,0 ,0 ,2)  

52 = (8; 2 ,0 ,2 ,0 )  

55 = (9; 1, 1, 1, 1) 

53 = (8; l,O, 1, 1) 

56 = (9; 2 ,0 ,2 ,0)  

54= (9; 1, 1 ,1 ,1)  

57 = (9; 2 ,0 ,0 ,2 )  

58 = (9; 0, 0 ,2 ,2)  

61 = (9; 2 ,0 ,0 ,2)  

6 4 =  (10; 2, 1 ,0 ,0)  

67 = (10; 2 ,0 ,2 ,0)  

70=(10;2,  l,O,2). 

59 = (9; l,O, 1, 1) 

62 = (9; 0, 0 ,2 ,2)  

65 = (10; 0, 1 ,2 ,0 )  

68 = (10; 2 ,0 ,0 ,2)  

60 = (9; 2 ,0 ,2 ,0 )  

63 = (10; 0, 0 ,2 ,2 )  

66 = (10; 0, 1, 0,2) 

69=  (10; 2, 1 ,2 ,0 )  

(6.3) 

The following products are forbidden: 132, 172, 18*, 212, 8*17, 6*17, 4*31, 13*14, 
7*25, 13*17, 13*20, 14*17, 15*17, 16*17, 14*18, 13*21, 13*25, 2*42, 17*18, 14*26, 
14*27, 14*32, 14*33, 4*52, 5*51, 4*50, 5*49, 8*35, 17*19, 13*32, 13*33, 13*26, 14*25, 
13*27, 17*21, 16*25, 15*25, 13*31, 13*30, 14*24 and 7*8*14. 
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All tensors obtained from the stretched product (example: 1*4 = (3;  0, 1,0,2))  of 
these elementary tensors constitute elements of a basis for tensor operators in the 
enveloping algebra of SO(8). Kostant has shown that there always exists a representa- 
tion in which any of these tensors exist (i.e. have non-vanishing matrix elements) and 
are functionally independent (if we exclude products with Casimirs). 

However, if we consider the action of these operators on basis states of a representa- 
tion for which one or more labels vanish, then'this basis (as well as the integrity basis) 
may reduce considerably; some of these operators simply vanish or are no longer 
functionally independent. We say that the enveloping algebra is degenerate. The 
generating function DE( U ;  N )  describing a basis for a degenerate enveloping algebra 
of a group G may be obtained (Giroux er a1 1984) from the generating function 
B(  N ;  M )  for branching rules of G 2 H x U( l)", where n is the number of vanishing 
representation labels of the states on which these operators are acting and H is the 
subgroup whose Dynkin diagram is obtained from that of G by removing vertices (and 
lines attached to them) corresponding to the non-vanishing labels. By keeping only 
the H x U( 1)" scalar part of B(  N ;  M )  we get a generating function which corresponds 
to D E ( U ;  N )  but with the variable U, which carries the degree, missing. As an 
example, let us consider the case where only the first label is non-zero. The Dynkin 
diagram corresponding to the zero labels is that of SO(6); the generating function 
B ( N ,  M )  for branching rules of SO(8) to SO(6) x U(1) is 

WNI, N2, N3, N4; M1, M2, M3, M4) 

= [ ( I  - N4M1M4)(1 - N4M3Mi1)(1 - N3M,M,')(1 - N3M3M4)(1 - N2) 

x(1-NzM*M:)(1-N,M,)(l-N,M,2)]-' 

x{[(I - N ~ M ~ M ~ ) ( I  - N ? M ~ M ~ * ) ] - ' +  N,M;[(I - N ~ M , M ~ )  

x ( 1  - N,M:)] - '+  N ~ N ~ M ~ [ ( I  - N ~ N ~ M , ) ( I  - ~ 2 ~ ~ ~ ; ~ ) l - l  

+N,N,N,M,M:[(l-N,N,M,)(l -Nlh'fi)]-'} 

where the N and M carry the SO(8) and SO(6) x U( 1 )  representation labels respectively 
( M4 carry the U( 1) label); setting MI,  M 2  and M3 equal to zero and keeping the zero 
degree part of M4, we get 

F ( N )  = [ ( 1  - N2)( 1 - N 3 - l .  

Knowledge of the integrity basis (6.3) of the non-degenerate enveloping algebra is 
useful in determining the degree of the tensors in the degenerate case. The highest 
degree (modulo products with Casimirs) uh at which a tensor ( n ,  , n 2 ,  n 3 ,  n4) appear 
in the non-degenerate enveloping algebra of SO(8) is equal to the sum of the coefficient 
of the simple roots in the highest weight of ( n , ,  n2,  n 3 ,  n4); we get u h  = 
3n1  + 5 n 2 + 3 n , + 3 n , .  Obviously, the degree of the tensor (0, 1,  0,O) has to be one. For 
(2,0,0, O), u h  = 6 and therefore the integrity basis (6.3) informs us that there are only 
three such tensors; based on past experience we expect that it is the lowest degree one 
that remains (of course, this remains to be proven). Thus, the generating function for 
the degenerate enveloping algebra is 

D E ( U ;  N1,N,)=[(1-UN2)(1-U2N:)]-' .  (6.4) 

The integrity basis has therefore been reduced to two elementary tensors: (1; 0, 1,0,0)  
and (2; 2 ,0 ,0 ,0) .  
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The number of linearly independent irreducible tensor operators that transform 
under the action of SU(3) according to some given irreducible representation is equal 
to the dimension of this representation (Baird and Biedenharn 1965). Biedenharn and 
Flath (1984), and more recently Le Blanc and Rowe (1986, 1987), have given a 
realisation of such a complete set C in the enveloping algebra of SO(8). We now 
produce this result using generating function techniques. 

The set C is defined within a subset of the full SO(8) enveloping algebra, namely 
the set of tensors defined by the following generating function: 

(6.5) 

Restricting ourselves to SO(8) representations for which only the second label is 
non-zero, the GF for branching rules from SO(8) to SU(4) is 

F( U ;  N2) = (1 - UN,)-'. 

F 1  (N2; M i ,  M2, M3) = [ ( 1 - N2M1 M3) ( 1 - N2M2)*( 1 - N*)]- '  (6.6) 

where the M carry the SU(4) labels. The GF for branching rules from SU(4) to SU(3) 
is 

F2(M1, M2, M3; P1, Pz) 
= [( 1 - MI)(  1 - MIPI)( 1 - M2P1)( 1 - M,PJ( 1 - M3PJ( 1 - M3)I-l (6.7) 

where the P carry the SU(3) labels. By combining (6.5)-(6.7) using the procedure 
described at (1.2) we get the following GF for SU(3) tensors in the set C :  

F4( U ;  P1, P2) 

= [( 1 - U)'( 1 - UP,P,)( 1 - UP, ) (  1 - UP2)] - ' [ (  1 - UP,)-'  

+ UP,( 1 - UP*)-']'. 

The integrity basis corresponding to the GF given in (6.8) is 

1 = ( 1 ; 0 , 0 )  2 = (1; 0,O) 3 = ( 1 ; 1 , 1 )  

4 = ( 1 ;  1,0) 5 = (1; 0, 1) 6 = ( 1 ;  1,O) 

7 = ( 1 ;  1,O) 8 = ( 1 ; 0 , 1 )  9 = ( 1 ; 0 , 1 )  

with the products 6*8 and 7*9 being forbidden; the first label denotes the degree, and 
the second and third labels the SU(3) labels. A GF MUL( P1, P2)  giving the multiplicity 
of tensors in C (we discard the factors (1 - U )  in (6.8)) is obtained from (6.8) by 
setting U = 1; after some algebra we get 

MUL(P, ,  P ~ ) = ( ~ - P ~ P , ) [ ( ~ - P ~ ) ~ ( ~ - P , ) ~ ] - ~ .  (6.9) 

The coefficient mob of a term m,,P?P:' in the expansion of (6.9) gives the multiplicity 
of the tensor (a, 6)  in C. From the SU(3) character generator (Stanley 1980) one 
obtains (6.9) as the dimension GF for SU(3); the coefficient ma, of a term m,,P:P,b 
in the expansion of (6.9) is therefore equal to the dimension of the SU(3) representation 
(a, 6). It follows that (6.8) defines a complete set of SU(3) tensor operators. 

We conclude this section with a few comments on how one could use the subjoining 
D4 < C, is obtain the GF for the SO(8) enveloping algebra. The embedding of interest 
is 

(0,1,0,0) - ( O , O ,  090) < (0, 1,0,0).  (6.10) 
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The GF for D4< C4 is 

K(M1, M2, M3, M4; N1, N2, N3, N4) 
= [( 1 - M:)( 1 - M:N:)(  1 - M:N:)(  1 - M4N3 

x ( l - ~ ~ N ~ ) ] - ' { [ ( 1 - ~ ~ ~ ~ ) ( 1  -M2hT2)(1-~3N3N4)]-1 

- M4 N2[ ( 1 - MI NI ) ( 1 - M2 N2) ( 1 f M4 N2) I-' 
- M3N1[( 1 - MI NI)( 1 f M3 NI)( 1 - M3N3N4)l-l 

f M3M4N1 N2[( 1 - MI NI ) ( 1 f M3 Ni )( 1 f M4K)I-I 

- M2[ ( 1 + M2) ( 1 - M2 N2) ( 1 - M ,  N3 N4) I-' 
f M2 M4 N2[ ( 1 f M2 ( 1 - M2 Nz ) ( 1 f M4 N2) 1 - I  

f M2M3N1[(1 -I- M2)(1 f M3N1)(1 - M3N3N4)I-l 

- M2M3 M4N1 N2[ ( 1 f M,) ( 1 f M3 NI ) ( 1 + M4N2) I-'} (6.11) 

where the Mi carry the Sp(8) representation labels and the Ni those of SO(8). Denoting 
an element of the integrity basis by ( m l ,  m2, m3, m4; n ,  , n2,  n3, n4) where the m and 
n are the representation labels of Sp(8) and SO(8) respectively, the integrity basis of 
(6.11) is 

1 = (1,0,0,0; 1,0,0,0) 

3 = (0, l , O ,  0; 0, 1,0,0) 

7 = -(O, 0,1,0; 1,0,0,0) 

9 = (O,O, 0, 1; o,o, 2,O) 

11 = -(O, o,o, 1; 0,1,0,0). 

2 = (2,0,0,0;  0, 0, 0,O) 

4 =  -(O, l,O, 0; o,o, 0,O) 

8 = (0, 0,2,0;  0 ,2 ,0 ,0)  
10 = (0, 0, 0 , l ;  0, 0, 0,2) 

5 = (0,2,0,0;  2 ,0 ,0 ,0)  6 = (0, 0, 1,O; 0, 0, 1, 1) 

The following products are forbidden: 1*4, 3*7 and 6*11. The desired GF is then 
obtained by 'substituting' (6.11) into (3.81); the presence of a scalar in (6.10) will 
manifest itself in the GF by a denominator term (1 + U) which may be discarded. If, 
in principle, the GF describing the decomposition of the SO(8) enveloping algebra may 
be obtained in this way, it is expected that the algebra would be quite tedious. We 
note that the tables of Bremmer et a1 (1985), giving the orbits contained in an irreducible 
representation, were very useful in evaluating (6.1 1). 

7. Conclusion 

The embeddings considered in (i 3 constitute only part of Dynkin's list. Cases not 
mentioned in this paper can also be used to find the integrity basis for polynomial 
tensors; however, by calculating the number of denominator factors of such GF, it is 
clear that even the simplest cases are difficult and therefore the use of the computer 
is highly recommended. A program like MULTI (which one of us (MC) intends to 
submit for publication to the Journal of Computer Physics Communications), combined 
with a program such as SCHUR which gives the branching (among other things) for 
many group-subgroup pairs (now commercially available from SCHUR Software 
Associates, New Zealand), would allow one to tackle many of these more difficult cases. 
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Note that we have considered only polynomial tensors (symmetric plethysms). The 
simplification exploited here is equally effective in determining generating functions 
for general plethysms; in the chain H c  G c  SU(d) of Q 1, one would need branching 
rules for all representations of S U ( d )  to G, and hence to H (Patera and Sharp 1980). 
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